STUDY OF BEHAVIORAL EVOLUTION BY SIMULATING VIRTUAL AGENT USING EVOLUTIONARY ALGORITHM: EVOLVING JUMPING BEHAVIOR

Jacky Tjoa 0700675766
08 PMC - GROUP

Abstract

This thesis concerns with evolving jumping behavior of a biped virtual agent. Evolutionary Algorithm (EA) is used to evolve the agent. It is expected that the agent can perform can evolve to perform well on the task. The process of achieving good jumping behavior shows how EA works on evolving the agent. In addition, this thesis also proves that by using EA, good jumping behavior could actually emerge which will be difficult if it is designed manually.

The agent is provided minimal capability to perform vertical jump, using the principle of Hooke’s Law on spring. Then, the agent is tested to jump over obstacles with various height settings. The height of the obstacles can be fixed or random. The controller for the agent is Artificial Neural Network (ANN) which takes environment sensors value from the agent and provide output as the action that should be taken by the agent. The performance of the agent is assessed by assigning scores. If the agent performs well, the scores will be high; otherwise, it will be low. The score will be used by EA to optimize the weight setting of ANN and in turn, optimize the agent itself. The performance is evaluated by plotting the scores to the graph. From the results obtained, it is observed that the agent performs well on fixed height obstacles, shown by quite stable graph movement; while the agent performs poorly on random height obstacles, shown by oscillating graph movement.

After the experiments are performed, the results show that good jumping behavior could actually achieved by using EA. On the graph, EA performs well on the fixed height obstacle setting since it is more predictable. On the other hand, EA does not perform well on random height obstacle setting since the factor of randomness confuses the EA.

Keywords
Virtual Agent, Artificial Neural Network, Evolutionary Algorithm, Jumping Behavior
PREFACE

Thanks the Lord, God Almighty, for His blessings that the author is able to finish this thesis work. The author has put the utmost effort in conducting research and arranging this thesis. Nevertheless, the author also realizes that this thesis is not with no defects and it is still far from perfection. Therefore, in this particular chance, the author wants to express gratitude and appreciation to everybody that has provide support, directly or indirectly, in helping the author to complete this thesis:

- My family at Medan,
- My relatives at Jakarta,
- Mr. Raymondus Kosala, Ph.D as the author’s supervisor,
- Johan Herry Santoso, as the author’s thesis partner,
- Mr. Minaldi Loeis, M.Sc., as the Program Director of BiNus International, Universitas Bina Nusantara, Jakarta,
- Ir. Tri A. Budiono M.I.T., as Head of School of Computer Science, BiNus International, Universitas Bina Nusantara, Jakarta,
- All the lecturers of BiNus International, Universitas Bina Nusantara, who have guide us during our study in BiNus International,

Jakarta, 7 September 2007

Author
TABLE OF CONTENTS

- COVER PAGE
- TITLE PAGE
- CERTIFICATE OF APPROVAL
- STATEMENT OF BOARD OF EXAMINER
- ABSTRACT ... i
- PREFACE ... ii
- TABLE OF CONTENTS .. iii
- LIST OF FIGURES ... vi
- LIST OF TABLES ... ix
- CHAPTER 1 INTRODUCTION ... 1
 - 1.1 Background .. 1
 - 1.2 Scope .. 2
 - 1.3 Aims and Benefits ... 2
 - 1.4 Research Questions .. 3
 - 1.5 Structure ... 3
- CHAPTER 2 THEORETICAL FOUNDATION 6
 - 2.1 Kinematics of Jumping ... 6
 - 2.2 Evolutionary Algorithm ... 9
 - 2.2.1 Basic Terms ... 10
 - 2.2.2 The Evolutionary Algorithm Run 12
 - 2.2.2.1 Initial Population 14
 - 2.2.2.2 Fitness Evaluation 16
 - 2.2.2.3 Selection Scheme 17
 - 2.2.2.4 Reproduction Operators 21
 - 2.2.2.5 Offspring (New Generation) 25
 - 2.2.2.6 Termination Criterion 26
 - 2.3 Artificial Neural Network (ANN) 27
 - 2.3.1 Biological Neuron ... 28
 - 2.3.2 Model of a Neuron .. 29
 - 2.3.3 The Network of Artificial Neurons 33
 - 2.3.4 Learning Paradigm .. 35
 - 2.4 Tools used .. 36
 - 2.4.1 Open Dynamics Engine (ODE) – Physics Engine 36
 - 2.4.1.1 Features of ODE 37
 - 2.4.2 Drawstuff – Rendering Engine 41
- CHAPTER 3 PROBLEM ANALYSIS 43
 - 3.1 Understanding the Problem 43
 - 3.2 Research Methods .. 44
 - 3.3 Current State of the Art .. 46
 - 3.3.1 General Overview .. 47
 - 3.3.1.1 Based on Task .. 47
 - 3.3.1.2 Based on Application 53
 - 3.3.2 Specific Overview ... 55
- CHAPTER 4 SOLUTION DESIGN 59
 - 4.1 Overview of the Program Design 59
 - 4.2 The Model .. 61
4.3 Neural Network Design ...63
4.4 Evolutionary Algorithm Design ..64
 4.4.1 Genetic Encoding ...65
 4.4.2 Selection Method ...65
 4.4.3 Crossover Technique ...66
 4.4.4 Mutation Technique ...68
4.5 UML Class Diagram ...72
 4.5.1 Whole View ...72
4.5.2 Specific View ...73
 4.5.2.1 World Class ...73
 4.5.2.2 Obstacle Class ..73
 4.5.2.3 NeuralNetwork Class ..74
 4.5.2.4 Layer Class ..74
 4.5.2.5 Neuron Class ..74
 4.5.2.6 Connection Class ..75
 4.5.2.7 Creature Class ..75
 4.5.2.8 Meccha Class ..76
 4.5.2.9 Evolution Class ..78
4.6 Modeling the Simulation ...78
 4.6.2 Jumping Loop ...80
 4.6.3 Obstacle design ...82
 4.6.4 Sensors and Actions ...83
 4.6.5 Fitness Evaluation ...85
CHAPTER 5 EXPERIMENTS AND RESULTS87
 5.1 How to Conduct Experiment ..87
5.2 Parameters Setup ...87
 5.2.1 Population Parameters ...87
 5.2.2 Evolutionary Algorithm Parameters88
 5.2.3 Neural Network Parameters ...88
 5.2.4 Obstacle Parameters ..89
 5.2.5 ODE Parameters ...89
5.3 Experiments Setup ..90
5.4 Test Plan ...91
5.5 Running the Experiment ...93
5.6 Result of the experiments ...94
 5.6.1 General Test ...94
 5.6.1.1 General Test # 1: Single Obstacle – Fixed Height94
 5.6.1.2 General Test # 2: Multi Obstacle – Fixed Height95
 5.6.1.3 General Test # 3: Single Obstacle – Random Height ...96
 5.6.1.4 General Test # 4: Multi Obstacle – Random Height ...97
 5.6.2 Specific Test ...98
 5.6.2.1 Restart Test ..98
 5.6.2.2 Random All-Jumpable Test102
 5.6.2.3 Best Individual Test ...103
CHAPTER 6 DISCUSSION ..104
 6.1 Analysis of the results overview ..104
6.2 Result Analysis ...105
 6.2.1 General Test ...105
 6.2.1.1 Single Obstacle – Fixed Height105
 6.2.1.2 Multi Obstacle – Fixed Height106
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1.3 Single Obstacle – Random Height</td>
<td>108</td>
</tr>
<tr>
<td>6.2.1.4 Multi Obstacle – Random Height</td>
<td>111</td>
</tr>
<tr>
<td>6.2.2 Specific Test</td>
<td>114</td>
</tr>
<tr>
<td>6.2.2.1 Restart Test</td>
<td>114</td>
</tr>
<tr>
<td>6.2.2.2 Random All-Jumpable Test</td>
<td>114</td>
</tr>
<tr>
<td>6.2.2.3 Best Individual Test</td>
<td>115</td>
</tr>
<tr>
<td>6.3 Discussion on the results</td>
<td>117</td>
</tr>
<tr>
<td>6.3.1 Discussion on General Test</td>
<td>117</td>
</tr>
<tr>
<td>6.3.2 Discussion on Specific Test</td>
<td>118</td>
</tr>
<tr>
<td>6.3.2.1 Discussion on Restart Test</td>
<td>118</td>
</tr>
<tr>
<td>6.3.2.2 Discussion on Random All-Jumpable Heights Test</td>
<td>118</td>
</tr>
<tr>
<td>6.3.2.3 Discussion on Best Individual Test</td>
<td>119</td>
</tr>
<tr>
<td>6.4 Comparison with other similar works</td>
<td>120</td>
</tr>
<tr>
<td>6.5 Discussion on the physical simulator</td>
<td>123</td>
</tr>
<tr>
<td>CHAPTER 7 CONCLUSION AND RECOMMENDATION</td>
<td>124</td>
</tr>
<tr>
<td>7.1 Conclusion</td>
<td>124</td>
</tr>
<tr>
<td>7.2 Future Work Recommendations</td>
<td>126</td>
</tr>
<tr>
<td>7.2.1 Recommendations on improving the results</td>
<td>126</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>130</td>
</tr>
<tr>
<td>CURRICULUM VITAE</td>
<td>135</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 2.1 Stick figure as human performing the jump phases ..6
Figure 2.2 Various topology of a solution space ..10
Figure 2.3 A Simple flowchart of the Evolutionary Algorithm12
Figure 2.4 Sample TSP Problem ..13
Figure 2.5 Randomly generated individuals for the initial population15
Figure 2.6 Order of individuals based on fitness value ..17
Figure 2.7 Random selection ..18
Figure 2.8 Tournament selection ...18
Figure 2.9 Roulette Wheel selection ...20
Figure 2.10 Line Diagram of the Roulette Wheel selection20
Figure 2.11 Crossover operation ..22
Figure 2.12 Mutation ...24
Figure 2.13 A neuron (nerve cell) ..28
Figure 2.14 A neuron model ..30
Figure 2.15 Threshold function ..32
Figure 2.16 Sigmoid function ..32
Figure 2.17 A typical structure of an MLN ...34
Figure 2.18 Screenshot of drawstuff world on the origin area, with an object casting shadow ..41
Figure 3.1 Relationship of supervisor, controller and simulator44
Figure 3.2 Re-implementation of Karl Sims’ work. (a) Work similar to Sims’ blocky creatures by Miconi and Channon. (b) Work similar to Sims’ creature, however, cylinder is used instead of cube. Work by Shim46
Figure 3.3 Real robot implementation. (a) The construction model of the biped (b) The real robot counterpart. Simulation model is not provided in the paper. Work by Chaisukkosol and Chongstitvatana ..48
Figure 3.4 Real robot implementation. (a) Simulation model of the robot named ‘Elvina’ (b) The ‘Elvina’ robot. Work by Wolff and Nordin48
Figure 3.5 Simulation-only models. (a) Biped simulation by Vaughan, Paolo and Harvey (b) Biped simulation by Pratt ..48
Figure 3.6 A quadruped creature. Work by Teo and Abbas49
Figure 3.7 A virtual spider. (a) front view (b) top view. Work by Alshurafa and Harmon ...49
Figure 3.8 Creatures evolved based on sticks. Work by Hornby and Pollack..........50
Figure 3.9 Various creatures evolved by Graham ...51
Figure 3.10 Lamprey evolving to swim. Work by Ijspeert, Hallam, and Willshaw52
Figure 3.11 Salamander evolving to walk (top) and swim (bottom). Work by Ijspeert, Hallam, and Willshaw ...52
Figure 3.12 (a) Flying creature by Breugel and Lipson (b) Flying creature by Shim and Kim ..53
Figure 3.13 Sequence of jumping motion after evolution. Work by Gritz and Hahn54
Figure 3.14 One of the scenes in Creatures ..54
Figure 3.15 Evolving Jumping Human by Streeter ...56
Figure 3.16 Best individual of evolved hopper by Ruebsamen. Pictures are seen left to right, top to bottom ...57
Figure 3.17 Evolved T-shaped jumper by Fagerlund ...58
Figure 4.1 Detailed overview of the simulation program ...59
Figure 4.2 MECCA-R4B model design ..61
Figure 4.3 Joint angles in ODE/drawstuff ...62
Figure 4.4 MECCA-R4B model on ODE/drawstuff ..63
Figure 4.5 Hierarchy of the Neural Network ...64
Figure 4.6 Detailed view of the neural network hierarchy ...64
Figure 4.7 Simple network with corresponding genome representation65
Figure 4.8 Roulette wheel selection with elitism ...66
Figure 4.9 One-point crossover producing two children ...67
Figure 4.10 Mutation on a genome ..68
Figure 4.11 Gaussian Random Perturbation distribution timestep 170
Figure 4.12 Gaussian Random Perturbation distribution timestep 270
Figure 4.13 Gaussian Random Perturbation distribution timestep 371
Figure 4.14 Gaussian Random Perturbation distribution random capture71
Figure 4.15 UML Class Diagram Whole View ...72
Figure 4.16 World Class ...73
Figure 4.17 Obstacle Class ...73
Figure 4.18 NeuralNetwork Class ..74
Figure 4.19 Layer Class ..74
Figure 4.20 Neuron Class ...74
Figure 4.21 Connection Class ...75
Figure 4.22 Creature Class ...75
Figure 4.23 (a) Meccha Class (Attributes) ...76
Figure 4.23 (b) Meccha Class (Operations) ...77
Figure 4.24 Evolution Class ..78
Figure 4.25 Agent jump, modeled as a spring ...79
Figure 4.26 Diagram depicting states of a jump ...80
Figure 4.27 An agent performing jump cycle ..81
Figure 4.28 Obstacle design ..82
Figure 4.29 Jumpable and Non-jumpable obstacle ..82
Figure 4.30 The agent sensors ...83
Figure 4.31 Neural Network inputs and outputs ..84
Figure 4.32 Tree diagram of rewards and penalties ..86
Figure 5.1 A typical simulation screen ..93
Figure 5.2 Single Obstacle – Fixed Height, Normal Crossover94
Figure 5.3 Single Obstacle – Fixed Height, Modified Crossover94
Figure 5.4 Multi Obstacle – Fixed Height, Normal Crossover95
Figure 5.5 Multi Obstacle – Fixed Height, Modified Crossover95
Figure 5.6 Single Obstacle – Random Height, Normal Crossover96
Figure 5.7 Single Obstacle – Random Height, Modified Crossover96
Figure 5.8 Multi Obstacle – Random Height, Normal Crossover97
Figure 5.9 Multi Obstacle – Random Height, Modified Crossover97
Figure 5.10 Single Obstacle – Fixed Height, Normal Crossover, Restart # 198
Figure 5.11 Single Obstacle – Fixed Height, Normal Crossover, Restart # 298
Figure 5.12 Single Obstacle – Fixed Height, Normal Crossover, Restart # 399
Figure 5.13 Single Obstacle – Fixed Height, Normal Crossover, Restart # 499
Figure 5.14 Single Obstacle – Fixed Height, Normal Crossover, Restart # 599
Figure 5.15 Single Obstacle – Fixed Height, Modified Crossover, Restart # 1100
Figure 5.16 Single Obstacle – Fixed Height, Modified Crossover, Restart # 2100
Figure 5.17 Single Obstacle – Fixed Height, Modified Crossover, Restart # 3101
Figure 5.18 Single Obstacle – Fixed Height, Modified Crossover, Restart # 4101
Figure 5.19 Single Obstacle – Fixed Height, Modified Crossover, Restart # 5101
Figure 5.20 Single Obstacle – Random Height, Normal Crossover, All Jumpable .102
Figure 5.21 Single Obstacle – Random Height, Modified Crossover, All Jumpable
...102
Figure 5.22 Best Individual Test on Multi Obstacle – Fixed Height103
Figure 5.23 Best Individual Test on Single Obstacle – Random Height103
Figure 6.1 Single Obstacle - Fixed Height, Normal Crossover, performance
evaluation ..106
Figure 6.2 Single Obstacle - Fixed Height, Modified Crossover, performance
evaluation ..106
Figure 6.3 Multi Obstacle – Fixed Height, Normal Crossover, performance
evaluation ..107
Figure 6.4 Multi Obstacle – Fixed Height, Modified Crossover, performance
evaluation ..107
Figure 6.5 Single Obstacle – Random Height, Normal Crossover (with Height)
indicating performance on jumpable and non-jumpable obstacle109
Figure 6.6 Single Obstacle – Random Height, Normal Crossover (with Height)
indicating performance on random jumpable heights109
Figure 6.7 Single Obstacle – Random Height, Modified Crossover (with Height)
indicating the performance on jumpable and non-jumpable obstacle ...110
Figure 6.8 Single Obstacle – Random Height, Modified Crossover (with Height)
indicating the performance on random jumpable heights110
Figure 6.9 Multi Obstacle – Random Height, Normal Crossover (with Height)
indicating the performance on jumpable and non-jumpable obstacle ...112
Figure 6.10 Multi Obstacle – Random Height, Normal Crossover (with Height)
indicating the performance on random jumpable heights112
Figure 6.11 Multi Obstacle – Random Height, Modified Crossover (with Height)
indicating the performance on jumpable and non-jumpable obstacle ...113
Figure 6.12 Multi Obstacle – Random Height, Modified Crossover (with Height)
indicating the performance on random jumpable heights113
Figure 6.13 Single Obstacle – Random Height, Normal Crossover, All Jumpable ..115
Figure 6.14 Single Obstacle – Random Height, Modified Crossover, All Jumpable
...115
Figure 6.15 Best Individual Test on Multi Obstacle – Fixed Height116
Figure 6.16 Best Individual Test on Random Height, All Jumpable, with Height .116
Figure 6.17 The best individual in action. Pictures are seen left to right, top to bottom
...120
LIST OF TABLES

Table 1.1 Thesis content description ...4
Table 2.1 Sample data for roulette selection ..19
Table 4.1 Table of MECCA-R4B joint limits ..62
Table 4.2 Table of MECCA-R4B mass setting ..62
Table 5.1 Population parameters ...87
Table 5.2 Evolutionary Algorithm parameters ...88
Table 5.3 Neural Network parameters ..88
Table 5.4 Obstacle Parameters ..89
Table 5.5 ODE parameters ...89